Unverified Commit 8812d513 authored by VadimsAhmers's avatar VadimsAhmers Committed by GitHub
Browse files

Fix timeout-related issues in tuners (#281)

* SequentialTuner fix

* round up timeout for iOpt.Solver using np.ceil

* refactored _tune in SequentialTuner

* excluded non-project code from PYPI package

* remove redundant try_tree_edit_distance function
parent c85a9d79
No related merge requests found
Showing with 16 additions and 52 deletions
+16 -52
......@@ -91,7 +91,7 @@ class GolemProblem(Problem, Generic[DomainGraphForTune]):
class IOptTuner(BaseTuner):
"""
Base class for hyperparameters optimization based on hyperopt library
Class for hyperparameters optimization based on iOpt library
Args:
objective_evaluate: objective to optimize
......@@ -139,7 +139,8 @@ class IOptTuner(BaseTuner):
eps_r=np.double(eps_r),
refine_solution=refine_solution,
number_of_parallel_points=self.n_jobs,
timeout=round(timeout.total_seconds()/60) if self.timeout else -1)
# round timeout up to avoid timeout=0 (minutes) passing to iOpt
timeout=np.ceil(timeout.total_seconds()/60) if self.timeout else -1)
def _tune(self, graph: DomainGraphForTune, show_progress: bool = True) -> DomainGraphForTune:
problem_parameters, initial_parameters = self._get_parameters_for_tune(graph)
......
from copy import deepcopy
from datetime import timedelta
from functools import partial
from typing import Callable, Optional
......@@ -64,8 +63,6 @@ class SequentialTuner(HyperoptTuner):
# Tuning performed sequentially for every node - so get ids of nodes
nodes_ids = self.get_nodes_order(nodes_number=nodes_amount)
final_graph = deepcopy(self.init_graph)
best_metric = self.init_metric
for node_id in nodes_ids:
node = graph.nodes[node_id]
......@@ -75,17 +72,14 @@ class SequentialTuner(HyperoptTuner):
self.log.info(f'"{node.name}" operation has no parameters to optimize')
else:
# Apply tuning for current node
graph, metric = self._optimize_node(node_id=node_id,
graph=graph,
node_params=node_params,
init_params=init_params,
iterations_per_node=iterations_per_node,
seconds_per_node=seconds_per_node)
if metric <= best_metric:
final_graph = deepcopy(graph)
best_metric = metric
graph, _ = self._optimize_node(node_id=node_id,
graph=graph,
node_params=node_params,
init_params=init_params,
iterations_per_node=iterations_per_node,
seconds_per_node=seconds_per_node)
self.was_tuned = True
return final_graph
return graph
def get_nodes_order(self, nodes_number: int) -> range:
""" Method returns list with indices of nodes in the graph
......
......@@ -232,7 +232,7 @@ class BaseTuner(Generic[DomainGraphForTune]):
@staticmethod
def set_arg_node(graph: OptGraph, node_id: int, node_params: dict) -> OptGraph:
""" Method for parameters setting to a graph
""" Method for parameters setting to a node
Args:
graph: graph which contains the node
......@@ -240,13 +240,13 @@ class BaseTuner(Generic[DomainGraphForTune]):
node_params: dictionary with labeled parameters to set
Returns:
graph with new hyperparameters in each node
graph with new hyperparameters in the specified node
"""
# Remove label prefixes
node_params = convert_parameters(node_params)
# Update parameters in nodes
# Update parameters in the specified node
graph.nodes[node_id].parameters = node_params
return graph
......
from datetime import timedelta, datetime
from itertools import zip_longest
from datetime import timedelta
from typing import Optional, Callable, Dict, Sequence
import networkx as nx
......@@ -7,7 +6,6 @@ import numpy as np
import zss
from networkx import graph_edit_distance, is_tree
from examples.synthetic_graph_evolution.generators import generate_labeled_graph
from golem.core.optimisers.optimization_parameters import GraphRequirements
from golem.metrics.graph_metrics import min_max
from libs.netcomp import edit_distance
......@@ -59,8 +57,7 @@ def get_edit_dist_metric(target_graph: nx.DiGraph,
requirements: Optional[GraphRequirements] = None,
) -> Callable[[nx.DiGraph], float]:
def node_match(node_content_1: Dict, node_content_2: Dict) -> bool:
operations_do_match = node_content_1.get('name') == node_content_2.get('name')
return True or operations_do_match
return node_content_1.get('name') == node_content_2.get('name')
if requirements:
upper_bound = upper_bound or int(np.sqrt(requirements.max_depth * requirements.max_arity)),
......@@ -87,31 +84,3 @@ def matrix_edit_dist(target_graph: nx.DiGraph, graph: nx.DiGraph) -> float:
adj.resize(shape)
value = edit_distance(target_adj, adj)
return value
def try_tree_edit_distance(sizes1=None, sizes2=None, node_types=None,
print_trees=False):
if not sizes1:
sizes1 = list(range(5, 100, 5))
if not sizes2:
sizes2 = sizes1
if not node_types:
node_types = ['X']
for i, (n1, n2) in enumerate(zip_longest(sizes1, sizes2)):
g1 = generate_labeled_graph('tree', n1, node_types)
g2 = generate_labeled_graph('tree', n2, node_types)
start_time = datetime.now()
dist = tree_edit_dist(g1, g2)
duration = datetime.now() - start_time
print(f'iter {i} with sizes={(n1, n2)} dist={dist}, '
f't={duration.total_seconds():.3f}s')
if print_trees:
print(nx.forest_str(g1))
print(nx.forest_str(g2))
if __name__ == "__main__":
try_tree_edit_distance(print_trees=False, node_types=list('XYZWQ'))
......@@ -44,7 +44,7 @@ setuptools.setup(
url=URL,
python_requires=REQUIRES_PYTHON,
license=LICENSE,
packages=setuptools.find_packages(exclude=['test*']),
packages=setuptools.find_packages(exclude=['test*', 'docs*', 'examples*', 'experiments*']),
include_package_data=True,
install_requires=_get_requirements('requirements.txt'),
extras_require={
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment