Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
  • F FEDOT
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 87
    • Issues 87
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 1
    • Merge requests 1
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • ITMO-NSS-team
  • FEDOT
  • Merge requests
  • !327

Merged
Created Jun 06, 2021 by Rosneft rosneft@rosneft_userDeveloper

Prototype of GPU evaluation

  • Overview 54
  • Commits 17
  • Changes 36

New modifications include:

  • initial GPU support via RAPIDS. The instruction of using Docker to run FEDOT on GPU is comming soon.
  • Dockerfile for the base usage of FEDOT.
  • the modification of OperationTypesRepository logic: now you 'define the behaviour' of repository by mode parameter, e.g. OperationTypesRepository('model'). Default modes, which are already included, are 'model' and 'data_operation'. If you want to assign any custom repository for any mode call the class method OperationTypesRepository.assign_repo('mode', 'custom_repo_file.json').

Example: repository = OperationTypesRepository().assign_repo('model', 'gpu_models_repository.json') available_operations = repository.suitable_operation(task_type=task.task_type)

Note: after calling the assign_repo method you saves the behaviour(in other words, saves the repository) for the chosen mode till next assign_repo will be called.

Currently

  • gpu evaluation is controlled by separated json repository (See repository/data/gpu_models.json)
  • models for classification and regression are supported. TS (arima) is coming soon.
  • file to run: gpu_example.py

Extra manuals:

  • https://github.com/rapidsai/cuml
  • https://medium.com/rapids-ai/running-rapids-on-microsoft-windows-10-using-wsl-2-the-windows-subsystem-for-linux-c5cbb2c56e04

Output of Win10/WSL2:

image

Assignee
Assign to
Reviewer
Request review from
Time tracking
Source branch: feature-gpu