Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
  • F FEDOT
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 87
    • Issues 87
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 1
    • Merge requests 1
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • ITMO-NSS-team
  • FEDOT
  • Issues
  • #607

Closed
Open
Created Mar 22, 2022 by Rosneft rosneft@rosneft_userDeveloper

Fix enequal indices problem

In some cases, the "test_multi_target_regression_composing_correct " test randomly fails with

________________ test_multi_target_regression_composing_correct ________________

multi_target_data_setup = (InputData(idx=['45', '40', '22', '22', '29', '35', '38', '43', '45', '47', '26', '20', '15', '20', '20', '23', '26', ...37. , 737. , 729. , 723. , 685.875], [729. , 737. , 737. , 729. , 723. , 685.875, 648.75 ]])))

def test_multi_target_regression_composing_correct(multi_target_data_setup):
    # Load simple dataset for multi-target
    train, test = multi_target_data_setup

Generations: 1%| | 1/100 [00:06<?, ?gen/s]

    problem = 'regression'
    simple_composer_params = get_simple_composer_params()

    automl_model = Fedot(problem=problem, composer_params=simple_composer_params)
  automl_model.fit(train)

test/unit/tasks/test_regression.py:114:


fedot/api/main.py:153: in fit self._train_pipeline_on_full_dataset(recommendations, full_train_not_preprocessed) fedot/api/main.py:386: in _train_pipeline_on_full_dataset self.current_pipeline.fit(full_train_not_preprocessed) fedot/core/pipelines/pipeline.py:164: in fit use_fitted_operations=use_fitted) fedot/core/pipelines/pipeline.py:123: in _fit train_predicted = self.root_node.fit(input_data=input_data) fedot/core/pipelines/node.py:323: in fit secondary_input = self._input_from_parents(input_data=input_data, parent_operation='fit') fedot/core/pipelines/node.py:353: in _input_from_parents secondary_input = InputData.from_predictions(outputs=parent_results) fedot/core/data/data.py:255: in from_predictions idx, features, target, task, d_type, updated_info = DataMerger(outputs).merge() fedot/core/data/merge.py:63: in merge idx, features, target, is_main_target, task = merge_func() fedot/core/data/merge.py:89: in combine_datasets_table idx_list) fedot/core/data/merge.py:196: in _merge_non_equal_outputs features = np.hstack(features) <array_function internals>:6: in hstack ??? /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages/numpy/core/shape_base.py:346: in hstack return _nx.concatenate(arrs, 1)


args = ([array([[20.0, -9.6, 9.125, 8.5, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [20.0, -5.6, 10.46875, 12.0, 0.0, 0.0, 1.0, 0.... , 7.6 , 54.125 , 4.5 , 0. , 1. , 0. , 0. , 0. , 0. ]])], 1) kwargs = {} relevant_args = [array([[20.0, -9.6, 9.125, 8.5, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [20.0, -5.6, 10.46875, 12.0, 0.0, 0.0, 1.0, 0.0... 6. , 7.6 , 54.125 , 4.5 , 0. , 1. , 0. , 0. , 0. , 0. ]])]

??? E ValueError: all the input array dimensions for the concatenation axis must match exactly, but along dimension 0, the array at index 0 has size 42 and the array at index 1 has size 72

<array_function internals>:6: ValueError

Assignee
Assign to
Time tracking