Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
  • F FEDOT
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 87
    • Issues 87
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 1
    • Merge requests 1
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • ITMO-NSS-team
  • FEDOT
  • Issues
  • #387

Closed
Open
Created Aug 11, 2021 by Elizaveta Lutsenko@LizLutsenkoOwner

RFE complains if there's only one feature

Created by: bacalfa

I'm testing the AutoML approach of Fedot to fit a dataset with a single feature. But I'm getting the following error:

Traceback (most recent call last):
  File "C:\Users\username\Miniconda3\envs\myenv\lib\site-packages\fedot\core\operations\evaluation\operation_implementations\data_operations\sklearn_selectors.py", line 38, in fit
    self.operation.fit(features_to_process, target)
  File "C:\Users\username\Miniconda3\envs\myenv\lib\site-packages\sklearn\feature_selection\_rfe.py", line 184, in fit
    return self._fit(X, y)
  File "C:\Users\username\Miniconda3\envs\myenv\lib\site-packages\sklearn\feature_selection\_rfe.py", line 193, in _fit
    X, y = self._validate_data(
  File "C:\Users\username\Miniconda3\envs\myenv\lib\site-packages\sklearn\base.py", line 433, in _validate_data
    X, y = check_X_y(X, y, **check_params)
  File "C:\Users\username\Miniconda3\envs\myenv\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "C:\Users\username\Miniconda3\envs\myenv\lib\site-packages\sklearn\utils\validation.py", line 871, in check_X_y
    X = check_array(X, accept_sparse=accept_sparse,
  File "C:\Users\username\Miniconda3\envs\myenv\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "C:\Users\username\Miniconda3\envs\myenv\lib\site-packages\sklearn\utils\validation.py", line 734, in check_array
    raise ValueError("Found array with %d feature(s) (shape=%s) while"
ValueError: Found array with 1 feature(s) (shape=(11, 1)) while a minimum of 2 is required.

Is there a way around this?

Assignee
Assign to
Time tracking