Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
  • F FEDOT
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 87
    • Issues 87
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 1
    • Merge requests 1
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • ITMO-NSS-team
  • FEDOT
  • Issues
  • #369

Closed
Open
Created Jul 20, 2021 by Elizaveta Lutsenko@LizLutsenkoOwner

Preprocessing with categorical features

Created by: MAGLeb

baseline_model = Fedot(problem='classification')
baseline_model.fit(features=train_data, target=TARGET_NAME)

Добавляя в датафрейм хотя бы один категориальный признак, код выше падает с ошибкой:

/anaconda/envs/azureml_py36/lib/python3.6/site-packages/fedot/core/composer/optimisers/gp_comp/gp_optimiser.py in _evaluate_individuals(self, individuals_set, objective_function, timer)
    382     def _evaluate_individuals(self, individuals_set, objective_function, timer=None):
    383         evaluate_individuals(individuals_set=individuals_set, objective_function=objective_function, timer=timer,
--> 384                              is_multi_objective=self.parameters.multi_objective)

/anaconda/envs/azureml_py36/lib/python3.6/site-packages/fedot/core/composer/optimisers/gp_comp/gp_operators.py in evaluate_individuals(individuals_set, objective_function, is_multi_objective, timer)
     94                 break
     95     if len(individuals_set) == 0:
---> 96         raise AttributeError('Too much fitness evaluation errors. Composing stopped.')
     97 
     98 

AttributeError: Too much fitness evaluation errors. Composing stopped.

Думаю на любом примере упадет, тем не менее, ниже столбец что я добавлял: image

Ниже скрипт чтобы скачать данные на которых пытаюсь запустить FEDOT:

DATASET_DIR = './example_data/test_data_files'
DATASET_NAME = 'sampled_app_train.csv'
DATASET_FULLNAME = os.path.join(DATASET_DIR, DATASET_NAME)
DATASET_URL = 'https://raw.githubusercontent.com/sberbank-ai-lab/LightAutoML/master/example_data/test_data_files/sampled_app_train.csv'

if not os.path.exists(DATASET_FULLNAME):
    os.makedirs(DATASET_DIR, exist_ok=True)

    dataset = requests.get(DATASET_URL).text
    with open(DATASET_FULLNAME, 'w') as output:
        output.write(dataset)
Assignee
Assign to
Time tracking