Something went wrong while setting issue due date.
Tests PipelineTuner for time series forecasting task with AR model fails for certain synthetic data
Closed
Tests PipelineTuner for time series forecasting task with AR model fails for certain synthetic data
In some cases synthetic data generation (get_synthetic_ts_data_period) gives samples for which statsmodels AR fails.
test\unit\pipelines\test_pipeline_tuning.py:221 (test_ts_pipeline_with_stats_model)
def test_ts_pipeline_with_stats_model():
""" Tests PipelineTuner for time series forecasting task with AR model """
is_tuning_finished = True
while is_tuning_finished:
for i in range (500):
print(f'Test n {i}')
is_tuning_finished = False
train_data, test_data = get_synthetic_ts_data_period()
ar_pipeline = Pipeline(PrimaryNode('ar'))
# Tune AR model
tuner_ar = PipelineTuner(pipeline=ar_pipeline, task=train_data.task, iterations=5)
tuned_ar_pipeline = tuner_ar.tune_pipeline(input_data=train_data,
> loss_function=mse)
test_pipeline_tuning.py:236:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
..\..\..\fedot\core\pipelines\tuning\unified.py:66: in tune_pipeline
loss_params=loss_params)
..\..\..\fedot\core\pipelines\tuning\tuner_interface.py:125: in final_check
loss_params=loss_params)
..\..\..\fedot\core\pipelines\tuning\tuner_interface.py:73: in get_metric_value
predicted_values = pipeline.predict(predict_input)
..\..\..\fedot\core\pipelines\pipeline.py:215: in predict
result = self.root_node.predict(input_data=copied_input_data, output_mode=output_mode)
..\..\..\fedot\core\pipelines\node.py:176: in predict
return super().predict(input_data, output_mode)
..\..\..\fedot\core\pipelines\node.py:104: in predict
is_fit_pipeline_stage=False)
..\..\..\fedot\core\operations\operation.py:116: in predict
is_fit_pipeline_stage=is_fit_pipeline_stage)
..\..\..\fedot\core\operations\evaluation\time_series.py:62: in predict
is_fit_pipeline_stage)
..\..\..\fedot\core\operations\evaluation\operation_implementations\models\ts_implementations.py:240: in predict
end=end_id)
C:\Users\yulas\AppData\Roaming\Python\Python37\site-packages\statsmodels\base\wrapper.py:113: in wrapper
obj = data.wrap_output(func(results, *args, **kwargs), how)
C:\Users\yulas\AppData\Roaming\Python\Python37\site-packages\statsmodels\tsa\ar_model.py:2187: in predict
exog_oos=exog_oos,
C:\Users\yulas\AppData\Roaming\Python\Python37\site-packages\statsmodels\tsa\ar_model.py:753: in predict
params, start, end, num_oos, exog, exog_oos
C:\Users\yulas\AppData\Roaming\Python\Python37\site-packages\statsmodels\tsa\ar_model.py:648: in _static_predict
out_of_sample = self._static_oos_predict(params, num_oos, exog_oos)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <statsmodels.tsa.ar_model.AutoReg object at 0x000001DAE9EE59C8>
params = array([0.24502213, 0.26224372, 0.27110584]), num_oos = 5
exog_oos = None
def _static_oos_predict(self, params, num_oos, exog_oos):
new_x = self._setup_oos_forecast(num_oos, exog_oos)
if self._maxlag == 0:
return new_x @ params
forecasts = np.empty(num_oos)
nexog = 0 if self.exog is None else self.exog.shape[1]
ar_offset = self._x.shape[1] - nexog - self._lags.shape[0]
for i in range(num_oos):
for j, lag in enumerate(self._lags):
loc = i - lag
> val = self._y[loc] if loc < 0 else forecasts[loc]
E IndexError: index -644 is out of bounds for axis 0 with size 346
Please register or sign in to reply