Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
  • F FEDOT
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 87
    • Issues 87
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 1
    • Merge requests 1
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • ITMO-NSS-team
  • FEDOT
  • Issues
  • #366

Closed
Open
Created Jul 20, 2021 by Elizaveta Lutsenko@LizLutsenkoOwner

Preprocessing features didn't progress, IF parameter "predefined_model" passed

Created by: MAGLeb

baseline_model = Fedot(problem='classification')
baseline_model.fit(features=train_data, target=TARGET_NAME, predefined_model='xgboost')

Features in the dataset were not preprocessing, it is means in the dataset different types of features (categorical, numerical, etc...) If pass parameter "predefined_model", then features not preprocessing and crushed.

/anaconda/envs/azureml_py36/lib/python3.6/site-packages/xgboost/core.py in _init_from_npy2d(self, mat, missing, nthread)
    546         # data copies if possible (reshape returns a view when possible and we
    547         # explicitly tell np.array to try and avoid copying)
--> 548         data = np.array(mat.reshape(mat.size), copy=False, dtype=np.float32)
    549         handle = ctypes.c_void_p()
    550         missing = missing if missing is not None else np.nan

ValueError: could not convert string to float: 'Cash loans'

image

Assignee
Assign to
Time tracking