1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import datetime
import os
import random
import numpy as np
import pandas as pd
import pytest
from sklearn.metrics import roc_auc_score as roc_auc
from fedot.api.main import Fedot
from fedot.core.caching.pipelines_cache import OperationsCache
from fedot.core.composer.advisor import PipelineChangeAdvisor
from fedot.core.optimisers.composer_requirements import ComposerRequirements
from fedot.core.composer.composer_builder import ComposerBuilder
from fedot.core.composer.gp_composer.gp_composer import GPComposer
from fedot.core.composer.random_composer import RandomGraphFactory, RandomSearchComposer, RandomSearchOptimizer
from fedot.core.data.data import InputData
from fedot.core.optimisers.gp_comp.gp_operators import random_graph
from fedot.core.optimisers.gp_comp.gp_optimizer import GeneticSchemeTypesEnum, GPGraphOptimizerParameters
from fedot.core.optimisers.gp_comp.pipeline_composer_requirements import PipelineComposerRequirements, \
MutationStrengthEnum
from fedot.core.optimisers.gp_comp.operators.selection import SelectionTypesEnum
from fedot.core.optimisers.objective import Objective, DataSourceBuilder, PipelineObjectiveEvaluate
from fedot.core.pipelines.node import PrimaryNode, SecondaryNode
from fedot.core.pipelines.pipeline import Pipeline
from fedot.core.pipelines.pipeline_graph_generation_params import get_pipeline_generation_params
from fedot.core.repository.dataset_types import DataTypesEnum
from fedot.core.repository.operation_types_repository import OperationTypesRepository, get_operations_for_task
from fedot.core.repository.quality_metrics_repository import ClassificationMetricsEnum, ComplexityMetricsEnum
from fedot.core.repository.tasks import Task, TaskTypesEnum
from test.unit.pipelines.test_pipeline_comparison import pipeline_first, pipeline_second
def to_numerical(categorical_ids: np.ndarray):
encoded = pd.factorize(categorical_ids)[0]
return encoded
@pytest.fixture()
def file_data_setup():
test_file_path = str(os.path.dirname(__file__))
file = '../../data/advanced_classification.csv'
input_data = InputData.from_csv(os.path.join(test_file_path, file))
input_data.idx = to_numerical(categorical_ids=input_data.idx)
return input_data
def get_unimproveable_data():
""" Create simple dataset which will not allow to improve metric values """
features = np.array([[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 101],
[1, 102], [1, 103], [1, 104], [1, 105]])
target = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
input_data = InputData(idx=np.arange(0, 10),
features=features,
target=target,
task=Task(TaskTypesEnum.classification),
data_type=DataTypesEnum.table)
return input_data
@pytest.mark.parametrize('data_fixture', ['file_data_setup'])
def test_random_composer(data_fixture, request):
random.seed(1)
np.random.seed(1)
data = request.getfixturevalue(data_fixture)
dataset_to_compose = data
dataset_to_validate = data
available_model_types, _ = OperationTypesRepository().suitable_operation(
task_type=TaskTypesEnum.classification)
objective = Objective(ClassificationMetricsEnum.ROCAUC)
req = ComposerRequirements(primary=available_model_types, secondary=available_model_types)
optimiser = RandomSearchOptimizer(objective, RandomGraphFactory(req.primary, req.secondary), iter_num=2)
random_composer = RandomSearchComposer(optimiser, composer_requirements=req)
pipeline_random_composed = random_composer.compose_pipeline(data=dataset_to_compose)
pipeline_random_composed.fit_from_scratch(input_data=dataset_to_compose)
predicted_random_composed = pipeline_random_composed.predict(dataset_to_validate)
roc_on_valid_random_composed = roc_auc(y_true=dataset_to_validate.target,
y_score=predicted_random_composed.predict)
assert roc_on_valid_random_composed > 0.6
@pytest.mark.parametrize('data_fixture', ['file_data_setup'])
def test_gp_composer_build_pipeline_correct(data_fixture, request):
random.seed(1)
np.random.seed(1)
data = request.getfixturevalue(data_fixture)
dataset_to_compose = data
dataset_to_validate = data
task = Task(TaskTypesEnum.classification)
available_model_types, _ = OperationTypesRepository().suitable_operation(
task_type=task.task_type)
metric_function = ClassificationMetricsEnum.ROCAUC
req = PipelineComposerRequirements(primary=available_model_types, secondary=available_model_types,
max_arity=2, max_depth=2, pop_size=2, num_of_generations=1,
crossover_prob=0.4, mutation_prob=0.5)
builder = ComposerBuilder(task).with_requirements(req).with_metrics(metric_function)
gp_composer = builder.build()
pipeline_gp_composed = gp_composer.compose_pipeline(data=dataset_to_compose)
pipeline_gp_composed.fit_from_scratch(input_data=dataset_to_compose)
predicted_gp_composed = pipeline_gp_composed.predict(dataset_to_validate)
roc_on_valid_gp_composed = roc_auc(y_true=dataset_to_validate.target,
y_score=predicted_gp_composed.predict)
assert roc_on_valid_gp_composed > 0.6
def baseline_pipeline():
pipeline = Pipeline()
last_node = SecondaryNode(operation_type='rf',
nodes_from=[])
for requirement_model in ['knn', 'logit']:
new_node = PrimaryNode(requirement_model)
pipeline.add_node(new_node)
last_node.nodes_from.append(new_node)
pipeline.add_node(last_node)
return pipeline
@pytest.mark.parametrize('data_fixture', ['file_data_setup'])
def test_composition_time(data_fixture, request):
random.seed(1)
np.random.seed(1)
data = request.getfixturevalue(data_fixture)
task = Task(TaskTypesEnum.classification)
models_impl = ['mlp', 'knn']
metric_function = ClassificationMetricsEnum.ROCAUC
req_terminated_evolution = PipelineComposerRequirements(
primary=models_impl,
secondary=models_impl, max_arity=2,
max_depth=2,
pop_size=2, num_of_generations=5, crossover_prob=0.9,
mutation_prob=0.9, timeout=datetime.timedelta(minutes=0.000001))
builder = ComposerBuilder(task) \
.with_history() \
.with_requirements(req_terminated_evolution) \
.with_metrics(metric_function)
gp_composer_terminated_evolution = builder.build()
_ = gp_composer_terminated_evolution.compose_pipeline(data=data)
req_completed_evolution = PipelineComposerRequirements(
primary=models_impl,
secondary=models_impl, max_arity=2,
max_depth=2,
pop_size=2, num_of_generations=2, crossover_prob=0.4,
mutation_prob=0.5)
builder = ComposerBuilder(task) \
.with_history() \
.with_requirements(req_completed_evolution) \
.with_metrics(metric_function)
gp_composer_completed_evolution = builder.build()
_ = gp_composer_completed_evolution.compose_pipeline(data=data)
assert len(gp_composer_terminated_evolution.history.individuals) == 1 # only the initial randomized population
assert len(gp_composer_completed_evolution.history.individuals) == 3
@pytest.mark.parametrize('data_fixture', ['file_data_setup'])
def test_parameter_free_composer_build_pipeline_correct(data_fixture, request):
""" Checks that when a metric stagnates, the number of individuals in the population increases """
random.seed(1)
np.random.seed(1)
data = request.getfixturevalue(data_fixture)
dataset_to_compose = data
dataset_to_validate = data
available_model_types, _ = OperationTypesRepository().suitable_operation(
task_type=TaskTypesEnum.classification)
metric_function = ClassificationMetricsEnum.ROCAUC
req = PipelineComposerRequirements(primary=available_model_types, secondary=available_model_types,
max_arity=2, max_depth=2, pop_size=2, num_of_generations=3,
crossover_prob=0.4, mutation_prob=0.5)
opt_params = GPGraphOptimizerParameters(genetic_scheme_type=GeneticSchemeTypesEnum.parameter_free)
builder = ComposerBuilder(task=Task(TaskTypesEnum.classification)) \
.with_history() \
.with_requirements(req) \
.with_metrics(metric_function) \
.with_optimiser_params(parameters=opt_params)
gp_composer = builder.build()
pipeline_gp_composed = gp_composer.compose_pipeline(data=dataset_to_compose)
pipeline_gp_composed.fit_from_scratch(input_data=dataset_to_compose)
predicted_gp_composed = pipeline_gp_composed.predict(dataset_to_validate)
roc_on_valid_gp_composed = roc_auc(y_true=dataset_to_validate.target,
y_score=predicted_gp_composed.predict)
all_individuals = len(gp_composer.history.individuals)
population_len = sum([len(history) for history in gp_composer.history.individuals]) / all_individuals
assert population_len != len(gp_composer.history.individuals[0])
assert roc_on_valid_gp_composed > 0.6
@pytest.mark.parametrize('data_fixture', ['file_data_setup'])
def test_multi_objective_composer(data_fixture, request):
random.seed(1)
np.random.seed(1)
data = request.getfixturevalue(data_fixture)
dataset_to_compose = data
dataset_to_validate = data
available_model_types, _ = OperationTypesRepository().suitable_operation(
task_type=TaskTypesEnum.classification)
quality_metric = ClassificationMetricsEnum.ROCAUC
complexity_metric = ComplexityMetricsEnum.node_num
metrics = [quality_metric, complexity_metric]
req = PipelineComposerRequirements(primary=available_model_types, secondary=available_model_types,
max_arity=2, max_depth=2, pop_size=2, num_of_generations=1,
crossover_prob=0.4, mutation_prob=0.5)
scheme_type = GeneticSchemeTypesEnum.steady_state
optimiser_parameters = GPGraphOptimizerParameters(genetic_scheme_type=scheme_type,
selection_types=[SelectionTypesEnum.spea2])
builder = ComposerBuilder(task=Task(TaskTypesEnum.classification)).with_requirements(req).with_metrics(
metrics).with_optimiser_params(parameters=optimiser_parameters)
composer = builder.build()
pipelines_evo_composed = composer.compose_pipeline(data=dataset_to_compose)
pipelines_roc_auc = []
assert type(pipelines_evo_composed) is list
assert len(composer.optimizer.objective.metrics) > 1
assert composer.optimizer.parameters.multi_objective
for pipeline_evo_composed in pipelines_evo_composed:
pipeline_evo_composed.fit_from_scratch(input_data=dataset_to_compose)
predicted_gp_composed = pipeline_evo_composed.predict(dataset_to_validate)
roc_on_valid_gp_composed = roc_auc(y_true=dataset_to_validate.target,
y_score=predicted_gp_composed.predict)
pipelines_roc_auc.append(roc_on_valid_gp_composed)
assert all([roc_auc > 0.6 for roc_auc in pipelines_roc_auc])
@pytest.mark.parametrize('data_fixture', ['file_data_setup'])
def test_gp_composer_with_start_depth(data_fixture, request):
random.seed(1)
np.random.seed(1)
data = request.getfixturevalue(data_fixture)
dataset_to_compose = data
available_model_types = ['rf', 'knn']
quality_metric = ClassificationMetricsEnum.ROCAUC
req = PipelineComposerRequirements(primary=available_model_types, secondary=available_model_types,
max_arity=2, max_depth=5, pop_size=5, num_of_generations=1,
crossover_prob=0.4, mutation_prob=0.5, start_depth=2)
scheme_type = GeneticSchemeTypesEnum.steady_state
optimiser_parameters = GPGraphOptimizerParameters(genetic_scheme_type=scheme_type,
with_auto_depth_configuration=True)
builder = ComposerBuilder(task=Task(TaskTypesEnum.classification)) \
.with_history() \
.with_requirements(req) \
.with_metrics(quality_metric).with_optimiser_params(parameters=optimiser_parameters)
composer = builder.build()
composer.compose_pipeline(data=dataset_to_compose)
assert all([ind.graph.depth <= 3 for ind in composer.history.individuals[0]])
assert composer.optimizer.requirements.max_depth == 2
@pytest.mark.parametrize('data_fixture', ['file_data_setup'])
def test_evaluation_saving_info_from_process(data_fixture, request):
data = request.getfixturevalue(data_fixture)
quality_metric = ClassificationMetricsEnum.ROCAUC
data_source = DataSourceBuilder().build(data)
objective_evaluator = PipelineObjectiveEvaluate(Objective(quality_metric), data_source,
pipelines_cache=OperationsCache())
objective_evaluator(pipeline_first())
global_cache_len_before = len(objective_evaluator._pipelines_cache)
assert global_cache_len_before > 0
# evaluate additional pipeline to see that cache changes
new_pipeline = pipeline_second()
objective_evaluator(new_pipeline)
global_cache_len_after = len(objective_evaluator._pipelines_cache)
assert global_cache_len_before < global_cache_len_after
assert new_pipeline.computation_time is not None
def test_gp_composer_builder_default_params_correct():
task = Task(TaskTypesEnum.regression)
builder = ComposerBuilder(task=task)
# Initialise default parameters
composer_with_default_params = builder.build()
# Get default available operations for regression task
primary_operations = composer_with_default_params.composer_requirements.primary
# Data operations and models must be in this default primary operations list
assert 'ridge' in primary_operations
assert 'scaling' in primary_operations
@pytest.mark.parametrize('max_depth', [1, 3, 5])
def test_gp_composer_random_graph_generation_looping(max_depth):
""" Test checks random_graph valid generation without freezing in loop of creation.
"""
task = Task(TaskTypesEnum.regression)
operations = get_operations_for_task(task, mode='model')
primary_operations = operations[:len(operations)//2]
secondary_operations = operations[len(operations)//2:]
requirements = PipelineComposerRequirements(
primary=primary_operations,
secondary=secondary_operations,
timeout=datetime.timedelta(seconds=300),
max_pipeline_fit_time=None,
max_depth=max_depth,
max_arity=2,
cv_folds=None,
advisor=PipelineChangeAdvisor(task=task),
pop_size=10,
num_of_generations=5,
crossover_prob=0.8,
mutation_prob=0.8,
mutation_strength=MutationStrengthEnum.mean
)
params = get_pipeline_generation_params(requirements=requirements,
task=task)
graphs = [random_graph(params, requirements, max_depth=None) for _ in range(4)]
for graph in graphs:
for node in graph.nodes:
if node.nodes_from:
assert node.content['name'] in requirements.secondary
else:
assert node.content['name'] in requirements.primary
assert params.verifier(graph) is True
assert graph.depth <= requirements.max_depth
def test_gp_composer_early_stopping():
""" Test checks early stopping criteria """
train_data = get_unimproveable_data()
time_limit = datetime.timedelta(minutes=10)
start = datetime.datetime.now()
model = Fedot(problem='classification', timeout=1000,
stopping_after_n_generation=1,
pop_size=2,
with_tuning=False,
preset='fast_train')
model.fit(train_data)
spent_time = datetime.datetime.now() - start
assert spent_time < time_limit