Commit abbd3d01 authored by autopep8 bot's avatar autopep8 bot
Browse files

Automated autopep8 fixes

No related merge requests found
Showing with 14 additions and 14 deletions
+14 -14
......@@ -163,7 +163,7 @@ class FedotIndustrial(Fedot):
# [self.config_dict.pop(x, None) for x in industrial_params]
industrial_params = set(self.config_dict.keys()) - \
set(FEDOT_API_PARAMS.keys())
set(FEDOT_API_PARAMS.keys())
for param in industrial_params:
self.config_dict.pop(param, None)
......@@ -399,7 +399,7 @@ class FedotIndustrial(Fedot):
predicted_probs=probs,
rounding_order=rounding_order,
metric_names=metric_names) for strategy,
probs in self.predicted_probs.items()}
probs in self.predicted_probs.items()}
else:
metric_dict = self._metric_evaluation_loop(
......
......@@ -92,7 +92,7 @@ class DataCheck:
forecast_length=self.task_params['forecast_length']))
if self.industrial_task_params is None:
features_array = features_array[:-
self.task_params['forecast_length']]
self.task_params['forecast_length']]
target = features_array
return InputData.from_numpy_time_series(
features_array=features_array, target_array=target, task=task)
......
......@@ -31,7 +31,7 @@ from fedot_ind.core.operation.transformation.data.hankel import HankelMatrix
def beta_thr(beta):
return 0.56 * np.power(beta, 3) - 0.95 * \
np.power(beta, 2) + 1.82 * beta + 1.43
np.power(beta, 2) + 1.82 * beta + 1.43
class ComputationalConstant(Enum):
......
......@@ -94,9 +94,9 @@ def industrial_common_modelling_loop(
finetune: bool = False,
api_config: dict = None,
metric_names: tuple = (
'r2',
'rmse',
'mae')):
'r2',
'rmse',
'mae')):
industrial = FedotIndustrial(**api_config)
dataset_is_dict = isinstance(dataset_name, dict) and 'train_data' in dataset_name.keys()
industrial_strategy = 'industrial_strategy' in api_config.keys()
......@@ -144,11 +144,11 @@ def create_comprasion_df(df, metric: str = 'rmse'):
df_full = df_full[df_full['Unnamed: 0'] == metric]
df_full = df_full.drop('Unnamed: 0', axis=1)
df_full['Difference_industrial_All'] = (
df_full.iloc[:, 1:3].min(axis=1) - df_full['industrial'])
df_full.iloc[:, 1:3].min(axis=1) - df_full['industrial'])
df_full['Difference_industrial_AG'] = (
df_full.iloc[:, 1:2].min(axis=1) - df_full['industrial'])
df_full.iloc[:, 1:2].min(axis=1) - df_full['industrial'])
df_full['Difference_industrial_NBEATS'] = (
df_full.iloc[:, 2:3].min(axis=1) - df_full['industrial'])
df_full.iloc[:, 2:3].min(axis=1) - df_full['industrial'])
df_full['industrial_Wins_All'] = df_full.apply(
lambda row: 'Win' if row.loc['Difference_industrial_All'] > 0 else 'Loose', axis=1)
df_full['industrial_Wins_AG'] = df_full.apply(
......
......@@ -70,7 +70,7 @@ class DataLoader:
def local_skab_load(self, directory='other', group=None):
path_to_result = PROJECT_PATH + \
f'/examples/data/detection/data/{directory}'
f'/examples/data/detection/data/{directory}'
folder_dict = {'other': [i for i in range(15)],
'valve1': [i for i in range(16)],
'valve2': [i for i in range(4)]}
......@@ -433,8 +433,8 @@ class DataLoader:
elif data_started:
# Check that a full set of metadata has been provided
incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or \
not has_univariate_tag or not has_target_labels_tag or \
not has_data_tag
not has_univariate_tag or not has_target_labels_tag or \
not has_data_tag
incomplete_classification_meta_data = \
not has_problem_name_tag or not has_timestamps_tag \
or not has_univariate_tag or not has_class_labels_tag \
......@@ -830,7 +830,7 @@ class DataLoader:
if line_num:
# Check that the file contained both metadata and data
complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag \
and has_target_labels_tag and has_data_tag
and has_target_labels_tag and has_data_tag
complete_classification_meta_data = \
has_problem_name_tag and has_timestamps_tag \
and has_univariate_tag and has_class_labels_tag and has_data_tag
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment